()
e
=)
=
®
()
(19
()
£
()
=
-

Lance
Hammond

Basem A.
Nayfeh

Kunle
Olukotun

Stanford
University

A Single-Chip
Multiprocessonr

What kind of architecture will best support a billion transistors? A
comparison of three architectures indicates that a multiprocessor on a chip
will be easiest to implement while still offering excellent performance.

ntegrated circuit processing technology offers

increasing integration density, which fuels micro-

processor performance growth. Within 10 years it

will be possible to integrate a billion transistors on

a reasonably sized silicon chip. At this integration
level, it is necessary to find parallelism to effectively uti-
lize the transistors. Currently, processor designs dynam-
ically extract parallelism with these transistors by
executing many instructions within a single, sequential
program in parallel. To find independent instructions
within a sequential sequence of instructions, or thread
of control, today’s processors increasingly make use of
sophisticated architectural features. Examples are out-
of-order instruction execution and speculative execu-
tion of instructions after branches predicted with
dynamic hardware branch prediction techniques.

Future performance improvements will require
processors to be enlarged to execute more instructions
per clock cycle.! However, reliance on a single thread
of control limits the parallelism available for many
applications, and the cost of extracting parallelism
from a single thread is becoming prohibitive. This cost
manifests itself in numerous ways, including increased
die area and longer design and verification times. In
general, we see diminishing returns when trying to
extract parallelism from a single thread. To continue
this trend will trade only incremental performance
increases for large increases in overall complexity.
Although this parallelization might be achieved

dynamically in hardware, we advocate using a soft-
ware approach instead, allowing the hardware to be
simple and fast. Emerging parallel compilation tech-
nologies,? an increase in the use of inherently parallel
applications (such as multimedia), and more wide-
spread use of multitasking operating systems should
make this feasible.

ALTERNATIVE APPROACHES

Researchers have proposed two alternative microar-
chitectures that exploit multiple threads of control:
simultaneous multithreading (SMT)? and chip multi-
processors (CMP).#

SMT processors augment wide (issuing many instruc-
tions at once) superscalar processors with hardware that
allows the processor to execute instructions from mul-

0018-9162/96/$10.00 © 1997 IEEE

tiple threads of control concurrently when possible,
dynamically selecting and executing instructions from
many active threads simultaneously. This promotes
much higher utilization of the processor’s execution
resources and provides latency tolerance in case a thread
stalls due to cache misses or data dependencies. When
multiple threads are not available, however, the SMT
simply looks like a conventional wide-issue superscalar.

CMPs use relatively simple single-thread processor
cores to exploit only moderate amounts of parallelism
within any one thread, while executing multiple
threads in parallel across multiple processor cores. If
an application cannot be effectively decomposed into
threads, CMPs will be underutilized.

From a purely architectural point of view, the SMT
processor’s flexibility makes it superior. However, the
need to limit the effects of interconnect delays, which
are becoming much slower than transistor gate delays,
will also drive the billion-transistor chip design.
Interconnect delays will force the microarchitecture to
be partitioned into small, localized processing ele-
ments. For this reason, the CMP is much more promis-
ing because it is already partitioned into individual
processing cores. Because these cores are relatively sim-
ple, they are amenable to speed optimization and can
be designed relatively easily.

In this article, we explain why software and hard-
ware trends will favor the CMP microarchitecture. We
base our conclusion on the performance results from
a comparison of simulated superscalar, SMT, and CMP
microarchitectures.

EXPLOITING PARALLELISM

Parallelism exists at multiple levels in modern systems.
Parallelism between individual, independent instructions
in a single application is instruction-level parallelism.
Loop-level parallelism results when the instruction-level
parallelism comes from data-independent loop itera-
tions. The finite number of instructions that can be
examined at once by hardware looking for instruction-
level parallelism to exploit is called the instruction win-
dow size. This window size is a crucial factor in
billion-transistor processors, because they must be
designed to exploit as much parallelism as possible.

Compilers, which have essentially infinite virtual

September 1997

We expect
thread and
process
parallelism
to become
widespread,
for two
reasons: the
nature of the
applications
and the
nature of the
operating
system.

instruction windows as they generate code, can help
increase usable parallelism by reordering instructions.
Instructions are reordered so that instructions that can
be issued in parallel are close to each other in exe-
cutable code, allowing the hardware’s finite window
to detect the resulting instruction-level parallelism.
Some compilers can also divide a program into mul-
tiple threads of control, exposing thread-level paral-
lelism. This form of parallelism simulates a single,
large, hardware instruction window by allowing mul-
tiple, smaller instruction windows—one for each
thread—to work together on one application.

A third form of very coarse parallelism, process-
level parallelism, involves completely independent
applications running in independent processes con-
trolled by the operating system.

In the future, we expect thread and process paral-
lelism to become widespread, for two reasons: the
nature of the applications and the nature of the oper-
ating system.

First, tomorrow’s multimedia user interfaces will
make extensive use of 3D graphics, full-motion video,
image recognition, voice generation, and voice recog-
nition. These multimedia applications are compu-
tationally intensive, with significant loop-level
parallelism. The emergence of sophisticated paral-

lelizing compiler technology will enable the conver-
sion of loop-level parallelism into thread-level paral-
lelism.? Future applications that include, for example,
computational chemistry, fluid dynamics, and other
forms of physical modeling will also feature signifi-
cant loop-level parallelism. These applications can also
be made multithreaded with a compiler. Some appli-
cations, such as compilers themselves, are impossible
to parallelize even with the most sophisticated com-
piler technology. However, hardware support that
eliminates the difficult problem of detecting memory
dependencies at compile time can make even these
applications parallelizable.>¢

A second reason that parallelism will become more
prevalent is that multiprocessor-aware operating sys-
tems and environments, such as Microsoft Windows
NT and Unix, execute separate applications in parallel
to increase throughput and provide a more responsive
computing environment. Because these sophisticated,
multimedia-laden user environments have enabled users
to run more applications simultaneously, process-level
parallelism is increasing as a result.

IMPLEMENTATION TECHNOLOGY CONCERNS
In a billion-transistor CMOS implementation tech-
nology, the most crucial design issue will be managing

Table 1. Characteristics of superscalar, simultaneous multithreading, and chip multiprocessor architectures.

Simultaneous Chip
Characteristic Superscalar multithreading multiprocessor
Number of CPUs 1 1 8
CPU issue width 12 12 2 per CPU
Number of threads 1 8 1 per CPU
Architecture registers (for integer and floating point) 32 32 per thread 32 per CPU
Physical registers (for integer and floating point) 32 + 256 256 + 256 32 + 32 per CPU
Instruction window size 256 256 32 per CPU
Branch predictor table size (entries) 32,768 32,768 8 x 4,096
Return stack size 64 entries 64 entries 8 x 8 entries
Instruction (1) and data (D) cache organization 1 x 8 banks 1 x 8 banks 1 bank
|'and D cache sizes 128 Kbytes 128 Kbytes 16 Kbytes per CPU
| and D cache associativities 4-way 4-way 4-way
| 'and D cache line sizes (bytes) 32 32 32
I 'and D cache access times (cycles) 2 2 1
Secondary cache organization (Mbytes) 1 x 8 banks 1 x 8 banks 1 x 8 banks
Secondary cache size (bytes) 8 8 8
Secondary cache associativity 4-way 4-way 4-way
Secondary cache line size (bytes) 32 32 32
Secondary cache access time (cycles) 5 5 7
Secondary cache occupancy per access (cycles) 1 1 1
Memory organization (no. of banks) 4 4 4
Memory access time (cycles) 50 50 50
Memory occupancy per access (cycles) 13 13 i3

Computer

interconnect delay. While transistor gate delay
decreases linearly with decreases in minimum feature
size, the wire delay stays nearly constant or increases
as wires become finer. This is due to increasing wire
resistance to load capacitance ratios. Furthermore, die
sizes are expanding as designers strive for higher per-
formance by using more gates than increased gate den-
sity alone provides. The result is that today the delay
of the longest wires on a chip is improving two to four
times more slowly than gate delay.

In addition, processor clock rates have been rising
exponentially as circuit designers have increasingly
optimized critical paths. A long wire in a circuit can now
affect the processor’s cycle time if it happens to be on a
critical timing path, or require additional pipeline stages
just to hide the delay of the wire drivers. For example,
Digital Equipment Corp.’s Alpha 212647 includes a
cycle in its pipeline just to drive data from the outputs
of the primary data cache back to the processor core.

The result of these trends is that the layout of a
billion-transistor chip will significantly affect the
processor’s architecture. Resources on a processor chip
that must communicate with each other in a single
cycle must be physically close together. Architecture
designers will need to excel either at arranging the sec-
tions of their CPUs to avoid long wires or at designing
pipelines that tolerate long wire latencies. This type of
design should logically result in a CPU built of several
small, high-speed logic blocks connected by longer,
slower wires that are only infrequently needed or
whose delay can be easily hidden by pipelining.

A concern second only to managing interconnect
delay is managing design complexity. The abstraction
level at which microprocessors are designed has risen,
and better tools for logic synthesis and automatic lay-
out tools are available. Nevertheless, the size of micro-
processor design teams has grown proportionally to
the transistor gate count. Another factor in design
complexity is the quest for higher performance, which
drives up clock frequency. This in turn requires even
more designers, to maintain the time to market.
Additionally, more engineers are needed to validate
the increasingly complex designs. Our increased abil-
ity to create complex architectures is outstripping our
ability to validate them. Thus, a radical change in
design style or a breakthrough in validation technol-
ogy will be required to economically complete a
billion-transistor microprocessor.

COMPARING ALTERNATIVE ARCHITECTURES

With these implementation concerns and design chal-
lenges in mind, we simulated three architectures—
superscalar, SM T, and CMP—to see which one held the
most potential at billion-transistor integration levels.
We established a standard chip area and integration
density based on a one-billion transistor DRAM. From

12-way issue logic
Program counter Single-thread register file
Instruction fetch unit Execution units and queues a
| | o
| 128-Kbyte | cache | | 128-Kbyte D cache | =
I I 2
| 8-Mbyte SRAM secondary cache iy
| RDRAM | | RDRAM | | RDRAM | RDRAM
(a)
12-way issue logic
— [o0]
- ol |g o]
(@) eee (@) 7 .o 7
o o o o
Q Q
o o
Instruction fetch unit Execution units and queues 3
| | £
| 128-Kbyte | cache | | 128-Kbyte D cache | aE;
| | &
>
| 8-Mbyte SRAM secondary cache &)
I I I
| RDRAM | | RDRAM | | RDRAM | RDRAM
(b)
CPU 1 e CPU 8
Dual- Dual-
issue issue
logic logic
§ 8
(SRR V|8
e o |5
7] [J]
24 o
= || £ < || &
S |3 S |3
2| ElE) .
— |8 — | w >
| - | - | | - 1 1 1 1 | I | 0
)) £
ARV N 3]
=12 2| E 2
| | I T T 1T T 1T T T T T T T T 1 @
| 8-Mbyte SRAM secondary cache
I
| RDRAM | | RDRAM | | RDRAM | RDRAM
(0 | | Instruction D Data PC Program counter |

this standard, we determined the parameters for the
three architectures listed in Table 1. Figure 1 illustrates
the architectures.

The superscalar processor, shown in Figure 1a, can
dynamically issue up to 12 instructions per cycle. This
is a straightforward extension of current commercially

Figure 1. Comparing
(a) superscalar, (b)
simultaneous multi-
threading, and (c)
chip multiprocessor
architectures.

September 1997

With even more
advanced IC
technologies,
the logic, wire,
and design
complexity
advantages will
increasingly
favor a
multiprocessor
implementation.

available superscalar processors. The SMT processor,
shown in Figure 1b, is identical to the superscalar
except that it has eight separate program counters and
executes instructions from up to eight different threads
of control concurrently. The processor core dynami-
cally allocates instruction fetch and execution resources
among the different threads on a cycle-by-cycle basis
to find as much thread-level and instruction-level par-
allelism as possible.

The CMP, shown in Figure 1c, is composed of eight
small 2-issue superscalar processors. This processor
depends on thread-level parallelism, since its ability
to find instruction-level parallelism is limited by the
small size of each processor.

Before we discuss the quantitative performance
results we achieved from our simulations, we explain
the architectures’ major design considerations in a
qualitative manner.

CPU cores

To keep the processors’ execution units busy, our
simulated superscalar and SMT processors feature
advanced branch prediction, register renaming, out-of-
order instruction issue, and nonblocking data caches.®
As a result, the processors have numerous multiported
rename buffers, issue queues, and register files.

The inherent complexity of these architectures results
in three major hardware design problems that the CMP
approach solves by keeping the hardware simple:

o Their area increases quadratically with the core’s
complexity. The number of registers in each
structure must increase proportionally to the
instruction window size. Additionally, the num-
ber of ports on each register must increase pro-
portionally to the processor’s issue width.

The CMP approach minimizes this problem
because it attempts to exploit higher levels of
instruction-level parallelism using more proces-
sors instead of larger issue widths within a sin-
gle processor. This results in an approximately
linear area-to-issue width relationship, since the
area of each additional processor is essentially
constant, and it adds a constant number of issue
slots. Using this relationship, the area of an 8 x
2-issue CMP (16 total issue slots) has an area sim-
ilar to that of a single 12-issue processor.

¢ They can require longer cycle times. Long, high-
capacitance I/O wires span the large buffers,
queues, and register files. Extensive use of mul-
tiplexers and crossbars to interconnect these
units adds more capacitance. Delays associated
with these wires will probably dominate the
delay along the CPU’s critical path. The cycle
time impact of these structures can be mitigated

Computer

by careful design using deep pipelining, by break-
ing up the structures into small, fast clusters of
closely related components connected by short
wires, or both. But deeper pipelining increases
branch misprediction penalties, and clustering
tends to reduce the ability of the processor to find
and exploit instruction-level parallelism.

The CMP approach allows a fairly short
cycle time to be targeted with relatively little
design effort, since its hardware is naturally clus-
tered—each of the small CPUs is already a very
small fast cluster of components. Since the oper-
ating system allocates a single software thread of
control to each processor, the partitioning of
work among the “clusters” is natural and
requires no hardware to dynamically allocate
instructions to different component clusters. This
heavy reliance on software to direct instructions
to clusters limits the amount of instruction-level
parallelism that can be dynamically exploited by
the entire CMP, but it allows the structures within
each CPU to be small and fast.

Since these factors are difficult to quantify,
the evaluated superscalar and SMT architectures
represent how these systems would perform if it
was possible to build an optimal implementation
with a fairly shallow pipeline and no clustering,
a combination that would result in an unaccept-
ably low clock cycle time in reality. This proba-
bly gives the CMP a handicap in our simulations.

e The CPU cores are complicated and composed
of many closely interconnected components. As
a result, design and verification costs will increase
since they must be designed and verified as sin-
gle, large units.

The CMP architecture uses a group of small,
identical processors. This allows the design and
verification costs for a single CPU core to be
lower, and amortizes those costs over a larger
number of processor cores. It may also be possi-
ble to utilize the same core design across a fam-
ily of processor designs, simply by including more
or fewer cores.

With even more advanced IC technologies, the
logic, wire, and design complexity advantages will
increasingly favor a multiprocessor implementation
over a superscalar or SMT implementation.

Memory

A 12-issue superscalar or SMT processor can place
large demands on the memory system. For example, to
handle load and store instructions quickly enough, the
processors would require a large primary data cache with
four to six independent ports. The SMT processor
requires more bandwidth from the primary cache than

the superscalar processor, because its multiple indepen-
dent threads will typically allow the core to issue more
loads and stores in each cycle, some from each thread. To
accommodate these accesses, the superscalar and SMT
architectures have 128-Kbyte, multibanked primary
caches with a two-cycle latency due to the size of the pri-
mary caches and the bank interconnection complexity.
The CMP architecture features sixteen 16-Kbyte
caches. The eight cores are completely independent and
tightly integrated with their individual pairs of caches—
another form of clustering, which leads to a simple,
high-frequency design for the primary cache system.
The small cache size and tight connection to these
caches allows single-cycle access. The rest of the mem-
ory system remains essentially unchanged, except that
the secondary cache controller must add two extra
cycles of secondary cache latency to handle requests
from multiple processors. To make a shared memory
multiprocessor, the data caches could be made write-
through, or a MESI (modified, exclusive, shared, and
invalid) cache-coherence protocol could be established
between the primary data caches. Because the band-
width to an on-chip cache can easily be made high
enough to handle the write-through traffic, we chose
that simpler coherence scheme for the CMP. In this way,
designers can implement a small-scale multiprocessor
with very low interprocessor communication latency.
To provide enough off-chip memory bandwidth for
our high-performance processors, we made all simu-
lations with main memory composed of multiple
banks of Rambus DRAMs (RDRAMs), attached via
multiple Rambus channels to each processor.

Compiler support

The main challenge for the compiler targeting the
superscalar processor is finding enough instruction-level
parallelism in applications to use a 12-issue processor
effectively. Code reordering is fundamentally limited
by true data dependencies and control dependencies
within a thread of instructions. It is likely that most
integer applications will be unable to use a 12-issue
processor effectively, even with very aggressive branch
prediction and advanced compiler support for expos-
ing instruction-level parallelism. Limit studies with large
instruction windows and perfect branch prediction
have shown that a maximum of approximately 10-15
instructions per cycle are possible for general-purpose
integer applications.’ Branch mispredictions will reduce
this number further in a real processor.

On the other hand, programmers must find thread-
level parallelism in order to maximize CMP perfor-
mance. The SMT also requires programmers to
explicitly divide code into threads to get maximum per-
formance, but, unlike the CMP, it can dynamically find
more instruction-level parallelism if thread-level paral-
lelism is limited. With current trends in parallelizing

compilers, multithreaded operating systems, and the
awareness of programmers about how to program par-
allel computers, however, these problems should prove
less daunting in the future. Additionally, having all eight
of the CPUs on a single chip allows designers to exploit
thread-level parallelism even when threads communi-
cate frequently. This has been a limiting factor on
today’s multichip multiprocessors, preventing some
parallel programs from attaining speedups, but the low
communication latencies inherent in a single-chip
microarchitecture allow speedup to occur across a wide
range of parallelism.*

Performance results

We evaluated the performance of each architecture
using four representative application workloads running
under a realistic simulation environment that included
the operating system. For each architecture, we assumed
that there is a functional unit of each type (integer, float-
ing point, load/store) for each issue slot, which means
that only data dependencies and issue width could pre-
vent an instruction from issuing. The functional unit
latencies used in the simulation are similar to those of
the recent Silicon Graphics’ MIPS R10000.1° Our simu-
lator properly modeled contention at the primary cache,
the secondary cache, and main memory.

The four benchmark programs we ran represent a
few large segments of computer usage.

e compress, from SPEC93, represents the field of
general integer applications with little instruction-
level parallelism and no thread-level parallelism—
as a result, we just ran it as a single thread.

¢ mpeg-2 decode represents the increasing number
of multimedia applications found in both desk-
top and server environments. Like most of these
applications, it has significant inherent instruc-
tion-level and thread-level parallelism, but
moderate memory requirements due to the algo-
rithm’s computationally intensive nature. We eas-
ily parallelized this application by hand in a
manner orthogonal to the fine-grained paral-
lelism exploited by multimedia extensions to
instruction set architectures such as Intel’s MMX.

¢ tomcatv, also from SPEC935, represents scientific
floating-point applications with large amounts
of loop-level parallelism and significant memory
bandwidth requirements. The superscalar archi-
tecture exploited instruction-level parallelism
within it, while the SMT and CMP both bene-
fited from thread-level parallelism automatically
found using a compiler.

e multiprogram is an integer multiprogramming
workload consisting of several different system
simulations, all of them computation-intensive.
We ran them as separate processes.

Logic, wire,
and design
complexity
advantages
will
increasingly
favor multi-
processor
over
superscalar
or SMT
implementa-
tions.

September 1997

Figure 2. Relative
performance of
superscalar,
simultaneous
multithreading, and
chip multiprocessor
architectures
compared to a
baseline, 2-issue
superscalar
architecture.

A O Superscalar —
OsmTt
6 — Jcmp

Relative performance
H
[

:

compress mpeg

Figure 2 shows the performance of the superscalar,
SMT, and CMP architectures on the four benchmarks
relative to a baseline architecture—a single 2-issue
processor attached to the superscalar/SMT memory
system.

The first two benchmarks show performance on
applications with moderate memory behavior and no
thread-level parallelism (compress) or large amounts
of thread-level parallelism (mpeg). In compress, the
wide-issue superscalar and SMT architectures
achieved a 43 percent performance gain over the base-
line processor, while the single active processor in the
CMP was roughly equivalent to the baseline.

Although improved compiler technology may pro-
vide better instruction scheduling in the future, it is
unlikely to significantly affect the performance of
benchmarks such as compress, which is more limited
by a lack of instruction-level parallelism due to true
data dependencies and unpredictable branches.

The superscalar architecture performed quite well
on mpeg, though it was still somewhat limited by the
lack of instruction-level parallelism that could be
exposed dynamically in the instruction window. The
SMT and CMP architectures were able to exploit
thread-level parallelism, as well, to operate more effi-
ciently. The SMT utilized its core resources most effi-
ciently, but the CMP achieved higher performance
since it had a total of 16 issue slots instead of 12.

Tomcatv has both instruction-level and thread-level
parallelism, but it also has extremely high memory
bandwidth requirements. The ability to provide this
memory bandwidth was a crucial factor in achieving
good performance on this benchmark. The superscalar
architecture achieved only a 40 percent performance
gain over the baseline processor. With only a single
thread of control, each cache miss tended to stall the
pipeline and waste large numbers of issue slots. A
more aggressive compiler could probably have sched-
uled instructions more efficiently, but multiple threads

Computer

tomcatv multiprogram

of control were ultimately more effective at hiding
cache-miss latency because the execution of some
threads overlapped with the stalls of others.

The CMP experienced a nearly eight-times perfor-
mance improvement over the single 2-issue processor.
The separate primary caches are beneficial because they
could be accessed by all processors in parallel. In a sep-
arate test with eight processors sharing a single cache,
bank contention between accesses from different proces-
sors degraded performance significantly. The average
memory access time to the primary cache alone went
up from 1.1 to 5.7 cycles, mostly due to extra queuing
delays at the contended banks, and overall performance
dropped 24 percent. In contrast, the shared secondary
cache was not a bottleneck in the CMP because it
received an order of magnitude fewer accesses.

SMT results showed similar trends. The speedups
tracked the CMP results closely when we modeled
similar degrees of data cache contention. The nomi-
nal performance was similar to that of the CMP’s with
a single primary cache, and performance improved 17
percent when we temporarily deactivated primary
cache contention. The multiple threads of control in
the SMT allowed it to exploit thread-level parallelism.
Additionally, the dynamic resource allocation in the
SMT allowed it to be competitive with the CMP, even
though it had fewer total issue slots.

However, tomcatv’s memory behavior highlighted a
fundamental problem with the SMT architecture: the
unified data cache architecture was a bandwidth limi-
tation. Making a data cache with enough banks or
ports to keep up with the memory requirements of eight
threads requires a more sophisticated crossbar network
that will add more latency to every cache access, and
may not help if there is a particular bank that is heav-
ily accessed. The CMP’s independent data caches avoid
this problem but are not possible in an SMT.

As with compress, the multiprogramming workload
has limited amounts of instruction-level parallelism,

so the speedup of the superscalar architecture was only
a 35 percent increase over the baseline processor.
Unlike compress, however, the multiprogramming
workload had large amounts of process-level paral-
lelism, which both the SMT and CMP exploited effec-
tively. This resulted in a linear eight-times speedup for
the CMP. The SMT achieved nearly a seven-times
speedup over the 2-issue baseline processor, more than
the increase in the number of issue slots would indi-
cate possible, because it efficiently utilized processor
resources by interleaving threads cycle by cycle.

for a billion-transistor architecture. On the basis

of our simulations, a CMP offers superior per-
formance using relatively simple hardware. On code
that can be parallelized into multiple threads, the
many small, high-performance CMP cores working
together will perform comparably to—or better
than—more complicated wide-issue superscalars or
SMTs on a cycle-by-cycle basis. They are also much
easier to design and optimize. Additionally, several
small, high-performance cores with tightly integrated
data caches should allow higher clock rates and/or
shorter pipelines in the CMP. SMTs can almost always
use execution resources more efficiently than CMPs,
but more execution units can be included in a CMP
of similar area, since less die area need be devoted to
the wide-issue logic. As a result, they perform and uti-
lize area comparably on multithreaded code.

The primary disadvantage of the CMP is that it is
slower than the more complex architectures when pre-
sented with code that cannot be multithreaded, because
only one processor can be targeted to the task.
However, a single 2-issue processor on the CMP is usu-
ally only moderately slower than superscalar or SMT
architectures, since applications with little thread-level
parallelism often also lack instruction-level parallelism
that can be exploited by superscalar processors. Also,
the remaining processors are free to increase system
throughput by running independent processes.

We have shown that CMPs are already a strong bil-
lion-transistor architecture, even with today’s appli-
cations and compilers. As application software
increases the use of thread- and process-level paral-
lelism, CMPs will become a better solution in the
future. Emerging operating environments and appli-
cations, such as multimedia, inherently will possess
larger amounts of parallelism, and future research into
parallel compilers will extend multiprocessors’ reach
into currently hard-to-parallelize applications. []

T he chip multiprocessor is a promising candidate

Acknowledgment
This work was supported by US Defense Advanced
Research Projects Agency contract DABT63-95-C-0089.

References

1. Y. Patt, “First Let’s Get the Uniprocessor Right,” Micro-
processor Report, Aug. 5, 1996, pp. 23-24.

2. M. Hall et al., “Maximizing Multiprocessor Perfor-
mance with the SUIF Compiler,” Computer, Dec. 1996,
pp- 84-88.

3. D. Tullsen, S. Eggers, and H. Levy, “Simultaneous Mul-
tithreading: Maximizing On-Chip Parallelism,” Proc.
22nd Ann. Int’l Symp. Computer Architecture, ACM
Press, New York, 1995, pp. 392-403.

4. K. Olukotun et al., “The Case for a Single Chip Multi-
processor,” Proc. 7th Int’l Conf. Architectural Support
for Programming Languages and Operating Systems,
ACM Press, New York, 1996, pp. 2-11.

5. G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar
Processors,” Proc. 22nd Ann. Int’l Symp. Computer
Architecture, ACM Press, New York, 1995, pp. 414-
425.

6. J. Oplinger et al., Soffware and Hardware for Exploit-
ing Speculative Parallelism in Multiprocessors, Tech.
Report CSL-TR-97-715, Computer Systems Laboratory,
Stanford Univ., Stanford, Calif., 1997.

7. L. Gwennap, “Digital 21264 Sets New Standard,”
Microprocessor Report, Oct. 28, 1996, pp. 11-16.

8. J.L. Hennessy and D.A. Patterson, Computer Architec-
ture A Quantitative Approach, 2nd Edition, Morgan
Kaufman, San Francisco, 1996.

9. D.W. Wall, Limits of Instruction-Level Parallelism, WRL
Research Report 93/6, Digital Western Research Labo-
ratory, Palo Alto, Calif., 1993.

10. K. Yeager, “The MIPS R10000 Superscalar Micro-
processor,” IEEE Micro, Apr. 1996, pp. 28-40.

Basem A. Nayfeb is a PhD candidate in electrical engi-
neering at Stanford University. His research interests are
parallel computer architecture and software, architec-
tural support for compilers and operating systems, and
dynamic compilation. Nayfeb received a BS in electrical
engineering from the University of Cincinnati, and an
MS in electrical engineering from Stanford University.

Kunle Olukotun is an assistant professor of electrical
engineering at Stanford University, where be leads the
Hydra project (hitp://www-hydra.stanford.edu). He
is interested in the design, analysis and verification of
computer systems using ideas from computer and
computer-aided design. Olukotun received a BS from
Calvin College and an MS and a PhD in computer
engineering from the University of Michigan. He is a
member of the IEEE and the ACM.

Contact the authors in care of Kunle Olukotun at
Stanford University, Rm. 302, Gates Computer Sci.
3A, Stanford, CA 94305-9030; {lance, bnayfeh,
kunle}@ ogun.stanford.edu; bttp:/fwww-hydra.stan-
ford.edu.

September 1997

