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Abstract

A microprocessor integrated with DRAM on the same die has the potential to improve system
performance by reducing the memory latency and improving the memory bandwidth. However, a
high performance microprocessor will typically send more accesses than the DRAM can handle
due to the long cycle time of the embedded DRAM, especially in applications with significant
memory requirements.

A multi-bank DRAM can hide the long cycle time by allowing the DRAM to process multiple
accesses in parallel, but it will incur a significant area penalty and will therefore restrict the
density of the embedded DRAM main memory. In this paper, we propose a hierarchical multi-
bank DRAM architecture to achieve high system performance with a minimal area penalty. In
this architecture, the independent memory banks are each divided into many semi-independent
subbanks that share I/O and decoder resources.

A hierarchical multi-bank DRAM with 4 main banks each composed of 32 subbanks occupies
approximately the same area as a conventional 4 bank DRAM while performing like a 32 bank
one — up to 65% better than a conventional 4 bank DRAM when integrated with a single-chip
multiprocessor.

1: Introduction

High speed DRAMs, such as synchronous DRAMs, have been developed to achieve high data
transfer rates for serial accesses. This speedup offers a large benefit for bandwidth-intensive
applications. However, improvements in memory latency have not kept up with the almost expo-
nential increase in processor speed, so system performance is often limited by the memory access
time [1].

Recently, microprocessors integrated with DRAM main memory have been developed [2]. In
this architecture, the DRAM and the processor are connected using a wide internal data bus on a
single die. The high speed data transfer through the internal data bus can improve the memory
latency, and therefore the performance, because the load capacitance of the internal data bus is
negligibly small compared to that of an external data bus.

Unlike fast SRAM memories, the cycle time for access to a random row in DRAMs is longer
than the access time. The sense, restore, and precharge operations for the selected memory cells
have to be done sequentially during each access cycle or the stored data in the memory cells
might be destroyed. In conventional DRAMs, no other random accesses may be initiated during
this time. The timing of these operations is unfortunately determined by the characteristics of the
memory array, and thus will not improve when DRAM is embedded on a processor chip.



High performance microprocessors such as wide issue superscalar processors or single chip
multiprocessors can produce many memory accesses quickly. For example, in a single chip mul-
tiprocessor composed of superscalar processors, the frequency of the memory references is quite
large because each processor can independently issue one or more DRAM accesses. When a high
performance microprocessor is integrated with DRAM main memory on a die, the numerous
access requests to the embedded DRAM could accumulate in memory queues and experience
significant queueing delay because of the long row cycle time. To avoid these problems, a multi-
bank embedded DRAM could be implemented. The simulated results for applications with large
data sets show that a 32 bank embedded DRAM is up to 1.67 times faster than a 4 bank one.
However, the increase in the number of banks incurs a significant area penalty. For example, a 32
bank embedded DRAM is about 1.8 times larger than a 4 bank one. As a result, conventional
multi-bank DRAM architectures significantly reduce the amount of DRAM which can be em-
bedded on a single chip. To achieve high performance, while minimizing the area penalty, we
propose the hierarchical multi-bank embedded DRAM architecture in this paper. The simulated
results show that the proposed architecture performs like a conventional 32 bank architecture,
with only a minimal area penalty.

The reminder of this paper is organized as follows. Section 2 gives a brief overview of our
baseline DRAM architecture. Section 3 discusses the two solutions to the high access rate prob-
lem: multiple banks and the hierarchical multi-bank DRAM. The architectural model used to
evaluate the system performance is covered in Section 4, and the simulation environment is
discussed in Section 5. In Section 6, realistic and limiting-case systems are evaluated. Finally, we
conclude in Section 7.
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Figure 1: Block diagram of the basic embedded 256Mb DRAM built from four
independent banks.



2: DRAM architecture

2.1: The embedded DRAM architecture

In this paper, a 256Mb DRAM is used as the embedded memory. 256Mb DRAMs are promis-
ing successors to 64Mb DRAMs, which are already mass-produced. Fig. 1 shows the block dia-
gram of a 256Mb DRAM memory array. Four independent DRAM banks are on each die in
typical 256Mb DRAM chips [4,5]. We use this as our baseline architecture. Every bank has two
32Mb memory arrays, each of which is further subdivided into 32 1Mb memory subarrays. Within
each of these subarrays, there are 4K bit line pairs with 256 cells connected to each pair. Each
subarray has a 2K block of sense amplifiers at each end, so sense amplifiers must be shared
between neighboring arrays, as the inset of Fig. 1 indicates. The sense amplifier blocks also
include equalization/precharge circuitry and a transfer gate to connect the sense amplifier to the
I/O lines. During each access, 128 bits are read from each of the two 32Mb memory arrays that
form one bank and are then sent to the CPU over a 256 bit wide memory bus that is shared among
the four DRAM banks. The access and cycle times of the embedded DRAM are assumed to be
30ns and 60ns, respectively. These values are quite reasonable for a mass-produced 256Mb DRAM
using a 0.25mm technology [4,5,9, with consideration for the fact that these numbers are for
handpicked lab samples under optimum conditions]. These times are also reasonable compared
with modern discrete DRAMs, which typically have 50-70ns access times, including the delay of
the pin I/O drivers.

A possible problem with this integrated DRAM is that 32MB of main memory may not be
enough in high-end computer systems. Since a fixed amount of memory is integrated on the die,
it is difficult to adjust the amount of memory in different systems. In this case, off-chip DRAM
may be added to the system to form another memory hierarchy level below the on-chip main
memory. Data movement between the two can be controlled by a software modification of the
existing virtual memory system. All of the applications which we are using to evaluate system
performance in this paper fit within a single 32MB main memory, so virtual memory operation is
not an issue in this paper, but it is covered briefly in [11].

2.2: A typical access

It is enlightening to examine the course of an access through a modern DRAM, in order to
provide a basis for our proposed changes. For the purposes of this discussion, each access is
divided into nine stages.  In reality, some of these stages would be overlapped in time, but this
breakdown divides each access into simple steps. This discussion refers heavily to Fig. 2, which
depicts how the hardware within a DRAM handles the necessary operations. Fig. 3 summarizes
how a physical address sent to the DRAM by the CPU will be broken up and decoded.

Before discussing how an access works in a DRAM chip, we need to understand the hardware
integrated into a modern, high-density DRAM. Fig. 2(a) depicts a simplified version of a block
within a DRAM array. The shaded vertical block depicts a single subarray within the DRAM
array, along with the sense amplifiers (SA), equalization/precharge circuits (EQ), and NMOS
transfer gates (transistor schematics) that line each side of the array and are shared with the
subarrays to each side.  The shaded horizontal block depicts a single column slice within the
DRAM array.  In all of the DRAM configurations from Section 2.1, each subarray is divided into
32 column slices that each produce 4 bits of the full 128 bits produced by a single array on each
access. The layout of the column decoders necessitates this particular grouping of bits. The light
grey intersection of the two blocks delineates a fundamental DRAM block within the array — a
128x256 block of DRAM cells lined with 64 sense amplifiers on each side that can read or write



4 bits at once. Four local I/O lines within each DRAM block — one for each bit that can be read
from or written to the block at once — attach the sense amplifiers to the global I/O lines running
the length of the column slice. At the edge of the subarray, a 8-to-256 row decoder and sense
amplifier control drivers are shared by all 32 column slices in that subarray. Above that, a global
5-to-32 decoder selects a subarray to handle each access. Meanwhile, the edge of the column
slice contains a 5-to-32 column decoder and I/O drivers that are shared by all of the DRAM
blocks in that column slice.

The following steps describe a read access to this particular DRAM in detail:
1. Bank Decoding and Access Queueing: First, address bits 6-5 are decoded to select which

of the independent DRAM banks should recover the cache line.  The access is sent to the
access queue for the appropriate bank and then forwarded to the memory array as soon as
possible — when all previous accesses for that bank have completed.

Figure 2: (a) A representative diagram of the hardware used during a DRAM
access. (b) How the hardware is used during the row access. (c) How the
hardware is used during the column access. (d) How the hardware is used
during the restore and precharge phase.
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2. Subarray Decoding: (Fig. 2(b)) Once the access is started, the global subarray decoder
uses bits 11-7 of the address to select a subarray. Its output enables a subarray’s row
decoder and the sense amplifier controllers to either side of the subarray. The output of
this decoder must be kept stable for all of the following steps.

3. Row Decode: (Fig. 2(b)) The enabled row decoder uses bits 19-12 of the address to
enable the wordline for one of 256 rows within the subarray. Driving long, high-resistiv-
ity, polysilicon wordlines used to be a speed-limiting factor in DRAMs, but modern
DRAMs have their wordlines frequently strapped to a first-level metal “support” wordline
running directly above the conventional polysilicon one. As a result, this step is rela-
tively fast. The output of this decoder is kept stable until the end of step 8.

4. Read Data to Sense Amplifiers: (Fig. 2(b)) The sense amplifiers to either side of the
selected subarray are enabled, and all 4Kb in the selected row are read out — 2Kb to
either side of the subarray.  There are actually 8K bitlines in each subarray, with 128 bits
of storage attached to each. During any particular access, half of the lines in the subarray,
one from each bitline pair, are connected to memory cells.  The other member of each
bitline pair is not connected to any cells, and simply acts as a reference line for its sense
amplifier.  The DRAM cells have been omitted from the reference lines in the figure to
avoid cluttering the graphic. Afterwards, the sense amplifiers act as a set of latches to
hold the read-out data until step 8.

5. Column Decode: (Fig. 2(c)) The column decoders, repeated in each column slice, decode
the last part of the address — bits 24-20. Each then drives the appropriate column select
line in its column slice. The select line in each column slice enables the I/O gates for 4
adjacent sense amplifiers in the DRAM block at the selected subarray, connecting them
with the 4 local I/O lines in the DRAM block. The output from this decoder is only
important for steps 6 and 7, below, that involve I/O.

6. Send Data over I/O Lines: (Fig. 2(c)) The subarray’s I/O enable signal is activated, con-
necting the local I/O lines within the subarray to the global I/O lines passing through
each column slice. The data selected in step 5 are then read out from the sense amplifiers
to the I/O drivers at the edge of the array through the interconnected local and global I/O
lines using a low-swing signal.

7. I/O Drivers: (Fig. 2(c)) High gain preamplifiers at the I/O drivers amplify the low-swing
signals sent over the I/O lines to full-swing CMOS levels, and then drive the data out
onto the memory bus to the CPU.

8. Restore Data to Cells: (Fig. 2(d)) As data is read by the sense amplifiers, the bit lines are
driven to full swing levels and recharge the capacitors in the original memory cells as a
result. During this step, the row decoder turns off its output, locking the restored charge
back into the DRAM cell.

9. Equalize and Precharge: (Fig. 2(d)) The sense amplifier controller enables the bitline
equalization circuitry, which shorts the two bitlines together and precharges them to an

Figure 3: How a physical address from the CPU is broken down.
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intermediate voltage level in preparation for the next access. Modern DRAMs use highly
resistive polysilicon bit lines because they allow more dense layouts than metal bitlines
would allow, and as a result the precharge time is typically greater than 30ns. After the
bitlines are equalized and precharged, the equalize circuit is left active to hold the bitlines
in position until another access is initiated.

Write accesses are similar, except that data is driven from the I/O logic to the sense amplifiers
during step 7, where it overrides the data previously latched into the sense amplifiers and resets
the bitline levels before step 8.

3: A problem — too many accesses at once

A critical problem inherent in embedded DRAM lies in its inability to handle the large number
of memory accesses that a high-performance processor can generate. Successive accesses may
proceed immediately if they do not need to access the same bank, since each memory bank is
completely independent. However, successive accesses that need the same bank must queue up
and serialize. To make matters worse, DRAM requires that the sense, restore, and precharge
operations for selected memory cells be done sequentially during a single access, before the next
access may start, or the data stored in the memory cells might be destroyed. The latency of these
operations is greatly dependent on characteristics of the memory array such as the parasitic resis-
tance and capacitance of the bit lines and the sensitivity of the sense amplifiers. As a result, the
cycle time of reading and restoring a row in embedded DRAM is typically larger than the access
time, and thus limits the ability of individual banks to accept successive accesses. This is not a
problem if the processor embedded with the DRAM is fairly low-performance, as in [2]. It also
has not historically been a problem for discrete DRAMs, because the off-chip interface limits the
number of accesses that can be pending at once. However, any kind of high-performance proces-
sor can send requests to embedded DRAM at a very high rate. This can result in many accesses
being queued at each bank, waiting one or more DRAM cycle times — which will typically be
tens or hundreds of CPU clock cycles — until all previous accesses complete. As a result, the
system performance can be significantly degraded by the long cycle time. The rest of this section
describes two ways to address this problem: adding more DRAM banks, and making a hierarchi-
cal multi-bank DRAM.

3.1: A conventional solution — more DRAM banks

Since row cycle times are only a problem when multiple accesses are sent to the same DRAM
bank, the most straightforward solution is to simply increase the number of independent DRAM
banks in order to lower the probability of a conflict. The cycle time can be hidden as long as
succeeding references are issued to other banks while a row cycle is completing in any one bank.
However, this solution causes the area of the embedded DRAM to be enlarged. Fig. 4(a) shows
the block diagram of a 32 bank embedded DRAM. Instead of 4 pairs of 32Mb blocks, the memory
is made up of 32 pairs of 4Mb blocks, each composed of 4 1Mb subarrays identical to those used
in the 4-bank architecture. As shown in Fig. 4(a), each of these smaller memory blocks has an
independent row decoder, column decoder, and I/O circuitry.

The relative area of the embedded DRAM, not considering control circuitry, is estimated in
Fig. 4(b). The area penalty is caused by the increase in the number of the sense amplifiers, col-
umn decoders, and the amount of I/O circuitry. For every new bank, a duplicate set of column
decoders and I/O circuitry are required, resulting in a significant area penalty directly propor-
tional to the number of banks. The area penalty of I/O circuitry is especially large, since the
embedded DRAM has a 256-bit wide internal memory bus to achieve high memory bandwidth,



and each output bit requires a full set of I/O drivers. The increase in sense amplifier area is more
subtle. As we mentioned in Section 2.1, each of the 1 Mb subarrays uses two sets of 2K sense
amplifiers, one on each side. While most of these are shared between neighboring subarrays, the
sets of sense amplifiers at the ends of each bank cannot be shared. Every new bank therefore
requires an additional set of unshared sense amplifiers, resulting in a small area increase.

Overall, a 16 bank embedded DRAM is about 1.4 times larger and a 32 bank one is about 1.8
times larger than a 4 bank one. This area penalty will significantly reduce the amount of DRAM
which may be economically integrated with a processor. Current DRAM designers probably
think that this degree of banking is ridiculous, but no previous DRAM application has allowed
such a high number of references to be pending on one DRAM chip at once due to the limitations
of the off-chip interfaces in conventional DRAMs. The pin latency and bandwidth has histori-
cally been a much more serious problem, so the number of banks has never been a major perfor-
mance-limiting factor. A high-performance embedded processor can change the situation en-
tirely.

Figure 4: (a) Block diagram of the embedded 256M bit DRAM with 32 indepen-
dent banks. (b) Comparison of the area requirements for different multi-
banked DRAM configurations.

(a)

(b)

C
ol

um
n 

D
ec

od
er

I/O
 C

irc
ui

tr
y

Row 
Decoder

C
ol

um
n 

D
ec

od
er

I/O
 C

irc
ui

tr
y

Row 
Decoder

1k

4k

4 Mb x 2

x 32 separate banks

12
8b

12
8b

Memory 
Bus

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAA
AAA

AAAA
AAAA

AAA
AAA

AA
AA

32 Banks

16 Banks

4 Banks

140 160 180 2000 20 40 60 80 100 120

54 18 14 7 32 56

54 16 14 7 16 28

54 14 14 747

AAA
AAAMemory Array

AAA
AAASense Amplifiers

Data Lines

Row Decoders

AAA
AAAColumn Decoders

I/O Circuitry

1.8

1.4

1.0

% of the 4-bank implementation



3.2: Our solution — the hierarchical multi-bank architecture

As an alternative, we propose a “hierarchical multi-bank” DRAM architecture to achieve the
high performance of an extensively banked DRAM with only a minimal area penalty. In this
proposed architecture, we simply convert the memory subarrays within the DRAM banks into
semi-independent “subbanks.” This is a useful approach, since a large part of each DRAM access
actually occurs only locally within individual DRAM subarrays. Fig. 5 shows the usage of the
DRAM array’s hardware during the various steps of a DRAM access. A few interesting observa-
tions can be made using this simple plot. First, the subarray selection decoder, shared by all
arrays, is used only at the beginning of an access, and then just holds its value constant for the
duration of the access. Second, the column slice resources — the column decoder and I/O hard-
ware — are only used in steps 5–7 from Section 2.2. The time required for these steps is actually
fairly short — about 8ns, based on data presented in [4]. Finally, all of the other resources are
physically localized within each subarray and its associated sense amplifiers to each side, and
can thus work fairly independently from the other subarrays. With the arrays configured as semi-
independent subbanks, much of the other 52ns required for each access may be overlapped with
other accesses to that bank. As a result, very little hardware is actually required to enable a
significant amount of parallelism. Fig. 6 summarizes the necessary changes.

First, Fig. 6(a) shows the additions to each subarray — just a few pipeline registers and con-
trols. A single set-reset flip-flop after the output from the subarray select decoder holds the subarray
activation output steady for the duration of the DRAM access, allowing the decoder to initiate
other accesses. The self-timed logic within the sense amplifier controller clears this flip-flop
when the access is complete. Buffers are also necessary to hold the address for the access associ-
ated with this subbank. This would physically consist of two separate buffers — one near the row
decoder and one near the column decoder. The row address buffer holds the input to the row
decoder steady throughout an access. The sense amplifier control logic connects the column
address buffer to the column decoder and activates the local I/O to global I/O transmission gate
only during steps 5–7, allowing other accesses to use the column decoder and global I/O lines
during the other steps. The actual DRAM arrays themselves are unmodified.

The second modification must be made to the DRAM access queues. They must be modified
to detect accesses that will not conflict and to then initiate nonconflicting accesses in parallel as

Figure 5: Resource utilization within the DRAM array . Black lines indicate
active logic, grey lines indicate logic that is holding an output value steady
for other units, and no line indicates that the resource is free.
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quickly as possible, a task similar to that performed by an out-of-order processor’s instruction
queue. Fig. 6(b) shows the additions to the bank access queues used in step 1 of each DRAM
access. As each access is added to the queue, its subarray address is passed through a subarray
selection decoder, which generates a bitvector of sense amplifiers needed by the access. Since
each access needs the sense amplifiers on both sides of a subarray, two adjacent bits are set in this
bitvector to represent both. The only exception to this is that the sense amplifiers at either end of
the memory array may be safely omitted from the bitvector, resulting in a vector of 31 bits for a
32 subarray DRAM bank. After the entry is queued, it is compared against the “busy” signals
returned from the subarray-active flip-flops to detect conflicts. These signals are also doubled to
represent which sense amplifiers are busy. As a result, a conflict is detected whenever there is an
access already using the subarray needed by this access or an access being processed in either of
its neighbors. The 0, 16, 1, 17, ... 31 numbering of the subbanks (indicated in Fig. 1) helps
prevent these “neighbor” conflicts on the common case of sequential accesses. When all conflicts
are cleared, the “ready” signal is raised and the DRAM bank will start the access as soon as
possible, while maintaining enough time between accesses to avoid collisions at the column
decoders and I/O logic. It should be noted that accesses not at the head of the memory access

Figure 6: (a) Modifications to each DRAM subarray to turn it into a semi-inde-
pendent subbank. (b) Modifications to the memory access queues.

(a)

(b)

Row Decoder:
8b to 256 lines

Subarray Decoder:
5b to 32 lines

Enable 
Lines

Sense 
Amp 

Control

Column 
Decoder:
5b to 32 

lines

Address from CPU:
bits 24–12

Active 
Buffer

Address Buffer
Clear

Set Set

“Array Busy” 

Column Cycle Active

Activate Local I/O-to-Global I/O Link

ColumnRow

A
cc

es
s 

C
om

pl
et

e

Output
Enable

Subarray Decoder:
5b to 32 lines

Bitvector of which Sense 
Amplifiers this access needs 

Address from CPU:
bits 24–7

Extended Bank 
Access Queue Entry

“Array Busy” Signals from DRAM

Bitvector of busy sense 
amplifiers 

Address (18b) Sense Amplifier Needs (31b)

Collision? Access Ready



queue may have their “ready” signals raised and lowered multiple times if older conflicting ac-
cesses are “ready” also and started first as a result. Because of this behavior, the “ready” signal
must be continually evaluated by dedicated collision detection hardware in each queue entry.
Eventually, all accesses will move to the head of the DRAM access queue and be processed by
the DRAM bank. This logic adds considerable complexity to the memory access queues, but
these are fairly small structures relative to the size of the DRAM arrays themselves.

 Fig. 6 depicts the changes necessary to fully transform all 32 subarrays within a main bank
into 32 subbanks. It is also possible to group adjacent subarrays together into larger subbanks, in
order to save a few registers. Groups of subarrays acting as a single subbank can share address
registers from Fig. 6(a), but not subarray-enabling flip-flops.  The bitvectors in Fig. 6(b) will still
work and will be N-1 bits long with N subbanks. Whenever any subarray within a subbank is
enabled, the bits representing the sense amplifiers at both ends of the subbank are enabled. Other
than that, the hardware is identical to the full 32 subbank scheme.

Overall, the additions necessary to make the subarrays into semi-independent subbanks are
logically somewhat complex, but since no major additions to the DRAM array are necessary only
a very small area penalty is incurred.

4: An integrated MP architecture

To evaluate the performance of the DRAM cycle time solutions, a high speed microprocessor
must be integrated with DRAM main memory. For the purposes of this paper, a single chip
multiprocessor is considered. A single chip multiprocessor has been recently studied as a promis-
ing candidate for future high performance microprocessor design [3]. When present DRAM pro-
cesses are applied directly to the fabrication of high performance processors, the processor’s
logic gates typically suffer speed and area penalties as a result. However, some DRAM manufac-

Figure 7: (a) Block diagram of the single chip multiprocessor integrated with
256Mb DRAM on the same die. (b)  The floor plan for the single chip multi-
processor integrated with a 256Mb DRAM.
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turers are developing merged process technologies which can achieve high density for the em-
bedded DRAM without degrading the logic performance. In this paper we nominally assume that
the single chip multiprocessor integrated with our high density DRAM can run at a clock fre-
quency of 500MHz. Fig. 7(a) shows the block diagram of a single chip multiprocessor integrated
with DRAM. To reduce the communication overhead, four 2-way superscalar processors are
interconnected with a 256 bit wide read/replace data bus whose bit width is identical to the cache
line size. As a result, each replace or line fill operation between the cache and DRAM occupies
the bus for only one CPU cycle. Since the four processors share the read/replace bus, arbitration
for this resource requires an extra cycle. Each of the four processors has a 16KB SRAM instruc-
tion cache and a 16KB SRAM data cache, both accessible in a single 2 ns clock cycle. Since each
cache can only be accessed by a single processor or its single load/store unit, no additional over-
head is incurred handling arbitration among independent memory access units within a proces-
sor. A writeback cache with a write miss allocate policy is implemented to reduce the traffic on
the read/replace data bus. Coherency among the individual data caches is maintained using an
update coherence protocol. The data written by each processor is broadcasted to all other data
caches through the 64 bit update bus. Each data cache has two I/O ports to minimize the interfer-
ence caused by the update operation. Like the read/replace bus, the memory bus and queues may
only accept one access per cycle, and therefore incur an extra arbitration cycle before a processor
may use them. Unlike the read/replace bus, the memory bus cycle is twice as long as a CPU clock
cycle. As a result, the peak memory bandwidth without bank conflicts is 8 GB/s.

The floor plan for a single chip multiprocessor integrated with a 256Mb DRAM is shown in
Fig. 7(b). In order to reduce the critical path of each memory access, the multiprocessor is located
between the divided upper and lower parts of the embedded DRAM. With a 0.25mm merged
process technology we estimate that the chip size will be approximately 24 millimeters on a side.
The size of the 4 x 2-way multiprocessor section of the chip is extrapolated from the current
MIPS R10000 processor [10].

5: Methodology

5.1: Simulation environment

We execute applications in the SimOS simulation environment [6]. With SimOS, the proces-
sors, memory hierarchy, and cache coherence issues are modeled with full consideration given to
contention between processors due to shared resources such as the central data bus. SimOS emu-
lates a multiprocessor running the full MIPS-2 instruction set interacting with a realistic set of I/
O components, allowing the full Silicon Graphics IRIX 5.3 operating system to be executed
under our benchmarks. SimOS supports three kinds of CPU simulators, which allow trade-offs to
be made between simulation speed and accuracy. In this paper, the slowest, most detailed CPU
simulator is used. This model supports multiple instruction issue in each processor, along with
full emulation of dynamic scheduling, speculative execution, and non-blocking memory refer-
ences. The cache and memory system components shown in Fig. 7(a) are completely event-
driven and interface to the SimOS processor models.

5.2: Applications

To evaluate the system performance, five realistic applications are used. Table 1 shows the
five applications: one SPEC95 integer benchmark (compress), one SPEC92 integer benchmark
(eqntott), and three SPEC95 floating point benchmarks (swim, tomcatv, applu). The applications
are parallelized in different ways to run on a multiprocessor. The compress benchmark cannot be



effectively parallelized, so only one of the four processors is used. Eqntott is parallelized manu-
ally by modifying a single bit vector comparison routine that is responsible for 90% of the execu-
tion time of the application [7]. It is characterized by a small working set. The SPEC95 floating
point benchmarks are automatically parallelized by the SUIF compiler system [8] across loop
iterations at a reasonably coarse level.

6: Performance results

6.1: The overhead caused by DRAM cycle time

To estimate the influence of the long DRAM cycle times, we first simulate the case with no
bank contention during row cycles at all by setting the DRAM cycle time equal to the access
time. The relative speedup of this idealistic scenario over the realistic case is shown in Fig. 8.

Fig. 8 indicates that the reduced cycle time significantly enhances the performance of the
swim, tomcatv, and applu benchmarks. These three applications have large reference data set
sizes, greater than 16MB. The average miss rate in the four data caches is 7.6% in swim, 4.6% in
tomcatv, and 2.7% in applu. Swim’s performance improves the most, since its data cache miss
rate is the highest among the three applications with large data sets. Integer applications such as
compress and eqntott display little enhancement. The average miss rate among the four data

Figure 8: Relative speedup in the case of the t c (DRAM cycle time) = t a (access
time) = 30ns, compared to the case of t c = 60ns and t a =30ns.
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Figure 9: See T able 2 for the key to letter codes. (a) The conflict probability .
(b) The average latency of the embedded DRAM. (c) Overall average memory
latency . (d) The relative speedup compared to the 4 bank architecture.
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caches is 1.5% in eqntott, better than any of the FP applications, due to the relatively small size of
the data set. The miss rate of the single active data cache in the unparallelized compress is high,
10.8%, but the average number of the memory references per cycle is small because only one
processor is actively issuing memory requests. As a result, there are usually too few memory
accesses in flight at once to cause significant amounts of bank contention.

These results show that the long cycle time of the embedded DRAM can significantly restrict
the performance when a high performance processor such as a single-chip multiprocessor is
integrated on the same die and executes applications which have large reference data sets.

6.2: Architectual performance comparison

Next we show simulated results obtained using the conventional multi-bank and the proposed
hierarchical multi-bank architectures. To review, the CPU clock frequency is 500MHz, the em-
bedded DRAM access time is 30ns = 15 CPU cycles, the row cycle time is 60ns = 30 CPU cycles,
and the column cycle time is 8ns = 4 CPU cycles. Here we assume that the total access path from
the memory cells to the processors is identical in any multi-bank architecture and, therefore, that
the access time has no dependence on the number of banks. The probability of bank conflicts is
depicted in Fig. 9(a). The increase in the number of banks greatly reduces the probability of bank
conflicts in the three floating point applications with large reference data sets. Even in these
memory-intensive applications, the worst-case probability of column conflicts in the hierarchical
multi-bank architecture is less than 6%. The 256-bit wide memory bus reduces the probability of
column conflicts by minimizing the time required to move a cache line into or out of the array.
Thus, the column conflicts cause only a small performance degradation in the hierarchical archi-
tecture. The number of bank conflicts due to row cycle times is greatly reduced by subbanking.
On the integer benchmarks, the probability of bank conflicts does not vary significantly with the
number of banks.

The average latency of the embedded DRAM, as shown in Fig. 9(b), is measured by timing
accesses from their entry into the memory buffer to their return from the DRAM. Here the unit of
the latency discussed in this paper is a CPU clock. The results of the three floating point applica-
tions indicate that frequent bank conflicts cause large latencies in spite of the improved access
time of the embedded DRAM. The ideal architecture, with no bank conflicts at all, improves the
latency down to 15–32 CPU clock cycles, reaching the random access time of the embedded
DRAM itself with some applications. There is some overhead even in the ideal case because of
contention for the common 256b memory bus. The proposed hierarchical multi-bank architecture

Table 2: Key to simulated layouts in Figure 9.
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with 4 main banks and 32 subbanks has approximately the same DRAM latency as the conven-
tional 32 bank architecture, while the hierarchical architecture with 4 main banks and 16 subbanks
achieves the same latency as the conventional 16 bank one.

The average memory latency including both the caches and main memory is depicted in Fig.
9(c). In addition, the performance is shown as the speedup of each multi-bank architecture rela-
tive to the conventional 4 bank one in Fig. 9(d). The increase in the number of banks reduces the
memory latency and enhances the performance of the three floating point applications. The swim
application, which has the lowest hit ratio in the data caches among these three applications,
obtains the largest performance enhancement by reducing the memory latency most significantly.

The proposed hierarchical multi-bank architecture with 4 main banks and 32 subbanks pro-
vides relative performances of 1.65, 1.24, and 1.18 in swim, tomcatv, and applu, respectively,
equivalent to those achieved by the conventional 32 bank architecture. On integer applications
with small data sets, such as compress and eqntott, the performance enhancement is quite small
— only 1.01 times faster with the hierarchical multi-bank architecture. Moreover, as we dis-
cussed in Section 6.1, compress does not see speedup because it does not overlap memory ac-
cesses significantly.

Finally, we evaluate the system performance using the effective IPC, counting only useful
instructions completed per cycle, in Table 3. Here the 4 x 2-way multiprocessor is viewed as an
integrated processor with an ideal effective IPC of eight. These results show that the hierarchical
multi-bank embedded DRAM can achieve significant speedups in applications with large data
sets.

6.3: Clock speed variations

Previously, we have assumed an aggressive merged process technology which can achieve
high density in the embedded DRAM while maintaining excellent logic performance. In this
section, we evaluate the effect of the proposed hierarchical multi-bank DRAM when it is inte-
grated with slower processors, which may be required if the merged process degrades the logic
performance. In this discussion, the CPU clock frequency is varied while the memory latencies
are kept constant. Fig. 10 shows the relative performance between the conventional 4 bank archi-
tecture and the hierarchical multi-bank architecture with 4 main banks and 32 subbanks over a
range of CPU clock frequencies while executing the three floating point applications. When the
CPU clock frequency is reduced to 333MHz, 200MHz, or 100MHz, the relative speedup of swim
is 1.39, 1.16, and 1.04, respectively. These results show that the effects of the hierarchical multi-
bank DRAM architectures are most significant in future processors with very high clock rates,
when the processors are able to have many memory requests in flight at once.

Table 3: Comparison of the effective IPC of a 4x2-way multiprocessor inte-
grated with DRAM main memory .

CPIevitceffE
sknab4fo

CPIevitceffE
&niam4fo

sknab-bus23

miws 69.1 32.3

vtacmot 03.2 58.2

ulppa 88.2 04.3

sserpmoc 18.0 28.0

ttotnqe 69.1 89.1



These results may also be interpreted as variations in the speed of the DRAM array, instead of
variations in the CPU clock speed.  Read this way, the results show that the hierarchical multi-
bank DRAM has the greatest impact in systems with relatively slow DRAM, and less of an effect
when DRAM is very fast.

7: Conclusion

The microprocessor integrated with DRAM on the same die has the potential to enhance sys-
tem performance by reducing the memory latency and improving memory bandwidth. The access
time of the embedded DRAM is reduced because the load capacitance of the internal I/Os is small
compared to external I/Os. However, the DRAM cycle time is determined by the characteristics
of the memory array, and thus will not improve when the DRAM is embedded. When a high
performance microprocessor, such as a single-chip multiprocessor, is integrated with DRAM,
memory access requests may be sent to the DRAM array faster than they may be processed due to
the long cycle time of the embedded DRAM.

In this paper, we have discussed the implementation of a conventional multi-bank architecture
and the proposed hierarchical one to solve this problem. The conventional multi-bank DRAM
architecture can enhance the system performance, but it causes a significant area penalty and
critically reduces the embedded main memory size. For example, a 32 bank DRAM is 1.8 times
larger than a conventional 4 bank one. To achieve high performance while maintaining high
DRAM density, we propose the hierarchical multi-bank architecture. In this architecture, indi-
vidual subarrays within independent banks are controlled as semi-independent subbanks, that
share the main bank’s I/O circuitry and decoders.

The hierarchical multi-bank DRAM with 4 main banks each composed of 32 subbanks has
approximately the same die size as a conventional 4 bank DRAM while achieving performance
comparable to a 32 bank one. With a single-chip multiprocessor integrated with the proposed
embedded DRAM, our results show that on applications which have large reference data sets the
hierarchical multi-bank DRAM with 4 main bank of 32 subbanks can perform up to 65% better
than a conventional 4 bank architecture.

Figure 10: The relative speedup as a function of processor clock rate in three
floating point applications. The hierarchical multi-bank architecture with 4
main banks and 32 sub-banks is compared with the conventional 4 bank
architecture.
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