
The Stanford Hydra CMP

Lance Hammond, Ben Hubbert, Michael Siu, Manohar Prabhu,
Michael Chen, Maciek Kozyrczak*, and Kunle Olukotun

Computer Systems Laboratory * Integrated Device Technology, Inc.
Stanford University RISC Microprocessor Division

http://www-hydra.stanford.edu http://www.idt.com

Hot Chips 1999

Hydra: A Chip Multiprocessor

• A CMP offers implementation benefits
— High-speed signals are localized in individual CPUs
— A proven CPU design may be replicated across the die

• Overcomes diminishing performance/
transistor return problem in uniprocessors

— Transistors are used today mostly for ILP extraction
— MPs use transistors to run multiple threads . . .

– On parallelized programs
– With multiprogrammed workloads

• Fast inter-processor communication eases
parallelization of code

Hydra: A CMP

Hot Chips 1999

The Basic Hydra CMP

Write-through Bus (64b)

Read/Replace Bus (256b)

On-chip L2 Cache

DRAM Main Memory

Main Memory Interface

CPU 0

L1 Inst.
Cache L1 Data Cache

CPU 1

L1 Inst.
Cache L1 Data Cache

CPU 2

L1 Inst.
Cache L1 Data Cache

CPU 3

L1 Inst.
Cache L1 Data Cache

I/O Devices

I/O Bus Interface

CPU 0 Memory Controller CPU 1 Memory Controller CPU 2 Memory Controller CPU 3 Memory Controller

Centralized Bus Arbitration Mechanisms

• 4 processors and secondary cache on a chip
• 2 buses connect processors and memory
• Coherence: writes are broadcast on write bus

Hydra: A CMP

Hot Chips 1999

Parallel Performance
Hydra: A CMP

• Varying levels of
performance

— Multiprogrammed
workloads work well

— Very parallel apps
(matrix-based FP
and multimedia) are
excellent

— Acceptable only with
a few less parallel
(i.e. integer) appsco

m
pr

es
s

m
88

ks
im

eq
nt

ot
t

M
P

E
G

2

ap
pl

u

ap
si

sw
im

to
m

ca
tv

pm
ak

e
0

0.5

1

1.5

2

2.5

3

3.5

4

S
pe

ed
up

 o
ve

r
1

H
yd

ra
 C

P
U

O
LT

P

MultiprogramMatrix and Multimedia
Applications

General Uniprocessor
Applications

Hot Chips 1999

Problem: Parallel Software

• Current parallel software is limited
— Some programs just don’t have significant parallelism
— Parallel compilers generally require dense matrix

FORTRAN applications

• Many applications only hand-parallelizable
— Parallelism may exist in algorithm, but code hides it
— Compilers must statically verify parallelism
— Data dependencies require synchronization
— Pointer disambiguation is a major problem for this!

• Can hardware help the situation?

Speculation Support

Hot Chips 1999

Solution: Data Speculation

• Data speculation enables parallelization
without regard for data dependencies

— Normal sequential program is broken up into threads
— Speculative threads are now run in parallel on CPUs
— Speculation hardware ensures correctness

• Parallel software implications
— Loop parallelization is now easily automated
— More “arbitrary” threads are possible (subroutines)
— Add synchronization only for performance

• Speculation support mechanisms
— Speculative thread control mechanism
— 5 memory system requirements

Speculation Support

Hot Chips 1999

Memory Requirements I

Iteration i+1

read X

read X

read X

write X

Iteration i

read X

read X

read X

write X

FORWARDING

VIOLATION

Original Sequential
Loop Speculatively Parallelized Loop

Forwarding
from write:

Iteration i+1

read X

read X

read X

write X

T
IM

E

Iteration i

read X

read X

read X

write X

1. Forward data between parallel threads
2. Detect violations when reads occur too early

Speculation Support

Hot Chips 1999

3. Safely discard bad state after violations
4. Retire speculative writes in the correct order

Memory Requirements II
Speculation Support

Iteration i+1

read X

T
IM

E

Iteration i

write X

write A

write B

TRASH

Iteration i+1

Iteration i

write X

write X

PERMANENT
STATE

21

Writes after Violations Writes after Successful Iterations

Hot Chips 1999

Memory Requirements III

5. Maintain multiple “views” of memory

Iteration i+1

T
IM

E

Iteration i

read X

write X

write X

read X

Multiple Memory “Views”

Iteration i+2

read X

AAAA
AAAA

AAAA

Hot Chips 1999

Hydra Speculation Support

Write-through Bus (64b)

Read/Replace Bus (256b)

On-chip L2 Cache

DRAM Main Memory

Main Memory Interface

CPU 0

L1 Inst.
Cache

L1 Data Cache &
Speculation Bits

Speculation Write Buffers

CPU 1

L1 Inst.
Cache

L1 Data Cache &
Speculation Bits

CPU 2

L1 Inst.
Cache

L1 Data Cache &
Speculation Bits

CPU 3

L1 Inst.
Cache

L1 Data Cache &
Speculation Bits

I/O Devices

I/O Bus Interface

CPU 0 Memory Controller CPU 1 Memory Controller CPU 2 Memory Controller CPU 3 Memory Controller

Centralized Bus Arbitration Mechanisms

CP2 CP2 CP2 CP2

#0 #1 #2 #3 retire

1. Write bus & L2 buffers provide forwarding
2. “Read” L1 tag bits set and watching write bus to detect violations
3. “Dirty” L1 bits & clearable L2 buffers allow backup
4. L2 buffers reorder & retire speculative state
5. Separate L1 caches with pre-invalidation & smart L2 forwarding for “view”
— Speculation coprocessors to control threads

Speculation Support

Hot Chips 1999

L1 Cache Tag Details

• Speculation requires 4 extra types of bits
— Read-by-word: Allow violation detection
— Written-by-word: Allow memory renaming
— Modified: Allow us to back up after violations
— Pre-invalidation: Allow us to commit and advance

• Special circuits are required in the array
— Gang clear of all bits on commits and backups
— Set modified bits cause valid bits to clear on backups
— Set pre-inval bits cause valid bits to clear on commits

Speculation Support

ValidModified Pre-inval LRU BitsRead-by-Word Bits Written-by-Word Bits

Gang Clear on either
Commit or Backup

Gang Clear and
Force Invalidation
on Backup Only

Gang Clear and
Force Invalidation
on Commit Only

Hot Chips 1999

L2 Buffer Details

• Speculative writes are held
here until commit time

— Collected by cache line
— CAM tag array, tail pointer
— Byte write mask for each line
— Drains into L2 when complete
— Size of another pair of L1s

• Reads are tricky
— Line read from L2 cache
— Any data from “earlier” buff-

ers is substituted, if present
— Requires byte-by-byte priority

encoding & muxing

Speculation Support

L2 Tag
[CAM]

Data
(L2 cache line)

Write Mask
(by byte)V

Head

Tail

Write Data in from Write BusAddresses

Drain writes to L2 cache
after committing the CPU

Read Data out to Read Bus

From other write
buffers and L2

Priority encode
by byte

Mux the most recent version
of each byte to the read bus

Hot Chips 1999

L2 Data Buffering

• Small buffers are sufficient
— We used a fully associative line buffer
— < 1 KB per thread captures most writes

▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆

◆

◆ ◆
◆

◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

✖ ✖ ✖

✖ ✖

✖ ✖ ✖

✖ ✖
✖ ✖

●

●

●
●

●

●

●

●
● ●

■■
■■■

■

■
■■■■■■■■■■■■■■■■■■■■■■■■■■

0 4 8 12 16 20 24 28 >32
0

10

20

30

40

50

60

70

80

90

100

F
ra

ct
io

n
of

 S
pe

cu
la

tiv
e

T
hr

ea
ds

 (
%

)

64 B Cache Lines

▲ wc

◆ m88ksim

✖ compress

● vortex

■ ijpeg

Speculation Support

0 KB 1 KB 2 KB

Hot Chips 1999

Speculation Performance

— Results representative of entire uniprocessor applications
— Simulated with accurate modeling of Hydra’s memory
— Enhanced performance versions were presented at ICS 99

Speculation Support

co
m

pr
es

s

eq
nt

ot
t

gr
ep

m
88

ks
im w
c

ijp
eg

m
pe

g2

al
vi

n

ch
ol

es
ky ea

r

si
m

pl
ex

0

0.5

1

1.5

2

2.5

3

3.5

4

S
pe

ed
up

Source adjusted
using statistics

Loop-only runtime

Baseline results

Speedup over 1 CPU

Hot Chips 1999

Prototype Overview

• CPU core and cache macros

• Speculative coprocessor
— Speculative memory reference controller
— Speculative interrupt screening mechanism
— Statistics mechanisms for performance evaluation and

to allow feedback for code tuning

• Memory system
— Read and write buses
— Controllers for all resources
— On-chip L2 cache
— Simple off-chip main memory controller
— I/O and debugging interface

Prototype Implementation

Hot Chips 1999

Prototype Layout

• Hardware design based on IDT RC32364
— 88 mm2 in 0.25µm process with 8K I/8K D/~128K L2

8 m
m

11 mm

L2
Cache
Tags

L2
Cache
Tags

CPU Core

Instruction
Cache

Data
Cache

System
Control

MMU
Memory
Control

Central Resource Arbiter

Central Address Arbiter

L2 Cache
Bank

L2 Buffers

L2
ControlI/O

 B
u

s C
o

n
tro

l

M
ain

 M
em

o
ry C

o
n

tro
l

Processor-Memory Communication Buses

CPU Core

Instruction
Cache

Data
Cache

System
Control

MMU
Memory
Control

CPU Core

Instruction
Cache

Data
Cache

System
Control

MMU

Memory
Control

CPU Core

Instruction
Cache

Data
Cache

System
Control

MMU

Memory
Control

L2
Control

L2 Cache
Bank

L2 Buffers

L2 Cache
Bank

L2 Buffers

L2 Cache
Bank

L2 Buffers

Prototype Implementation

Hot Chips 1999

Prototype Issues

• 250 MHz clock rate target
— Most critical parts are primarily in existing cores
— Pipelining in most of the memory system may change

to meet timing requirements

• Central Bus Arbitration Mechanism
— High fan-in and fan-out gates
— Single cycle operation required here

• Drivers for long buses

• Road Map
— Finish synthesizable Verilog, this summer
— Finish circuit design and layout, H2 ’99
— Complete verification and tapeout, H1 ’00

Prototype Implementation

Hot Chips 1999

Conclusions

• Hydra offers many advantages
— Great performance on parallel applications
— Good performance on most uniprocessor applications

using data speculation mechanisms
— Scalable, modular design
— Speculative hardware does not add much to cost, yet

greatly increases the number of parallel applications

• Prototype implementation
— Will work out implementation details
— Will allow us to validate our performance evaluations
— Will provide a platform for application and compiler

development
— Will be the first implementation of a multiprocessor

with speculative memory support

Conclusions

